« 索道入門5 ~索道の輸送能力 その2 | トップページ | 八海山ロープウェー ~支柱通過10m/sの国内第1号 »

2005.11.18

索道入門6 ~索道の輸送能力 その3

○交走式の輸送力

大型の搬器(箱)が2台、交互に往復するロープウェイを交走式という。この場合の時間当たりの輸送能力は、1時間で何往復できるかで決まる。1時間で何往復できるかは、所要時間と乗降時間で決まる。所要時間は加減速の時間と途中の定速運転の時間だ。

1時間当たり輸送能力=搬器定員×(1時間/(乗降時間+所要時間))

乗降時間を短縮すれば輸送能力が上がるので、ロープウェイでは大型の扉を採用しているケースも多い。さらに停留場では両側にホームを作り、外側と内側の扉を同時に開き、乗降を同時に行なう事で時間短縮を図る事もあるが、この場合、両方のホームに係員を配置しないとならず人件費節約のためか、この機能を使っていないロープウェイも見かける。

所要時間は意外と複雑だ。加速が終わればずっと最高速度で運転されるかというと、必ずしもそうとは限らない。支柱通過に制限速度がある場合もあり、その場合は支柱通過時のみ減速するわけだ。

こういうわけで、なかなか簡単に部外者は輸送力を計算できないのだ。

現在、国内の交走式の最高速度は10m/s。最近になってこの速度で支柱通過が出来るようになったので、この場合は線路中の減速がなく、これも輸送力を上げる手段の一つになっている。

あと、ロープウェイの定員は61人とか101人とか、キリのよい数字になっていない事が多いが、これは車掌も定員に含まれているためで、乗客定員は60人や100人という事なのだ。

さて、ここで試しに速度10m/s、傾斜長2000m、101人乗りのロープウェイの輸送力を概算してみよう。

 まず乗降時間。100人の入れ替わりなので、定員一人当たり1.5秒と仮定すると150秒。加速度は0.2~0.3m/s^2が多いそうなので10m/sまでの加速時間を30秒と仮定すると、加減速区間長は270m、加速区間と減速区間は同じ長さなので残る1460mを10m/sで走る計算だ。つまり所要時間は、146秒+加速30秒+減速30秒=206秒となる。これに乗降時間を足した356秒が片道分。つまり1時間当たり約10回の運転なので、輸送能力は約1000人という事になる。

 つまり最新技術の101人乗りロープウェイといっても、ペアリフトよりも輸送力がないのだ。実際にはロープウェイで最高速度10m/sの路線は極めて少なく、折り返し時間が3分以下という運転もまずない。この試算でさえ多めの見積もりなのだ。ロープウェイって意外と人を運べない。

2005年11月17日執筆

« 索道入門5 ~索道の輸送能力 その2 | トップページ | 八海山ロープウェー ~支柱通過10m/sの国内第1号 »

コメント

この記事へのコメントは終了しました。

トラックバック


この記事へのトラックバック一覧です: 索道入門6 ~索道の輸送能力 その3:

« 索道入門5 ~索道の輸送能力 その2 | トップページ | 八海山ロープウェー ~支柱通過10m/sの国内第1号 »